Please use this identifier to cite or link to this item: http://lib.jncasr.ac.in:8080/jspui/handle/10572/2570
Title: Tuning electrochemical potential of LiCoO2 with cation substitution: first-principles predictions and electronic origin
Authors: Varanasi, Arun Kumar
Bhowmik, Arghya
Sarkar, Tanmay
Waghmare, Umesh V.
Bharadwaj, Mridula Dixit
Keywords: Physical Chemistry
Electrochemistry
Condensed Matter Physics
Lithium-Ion Battery Cathode
Density Functional Theory
Bader Charge Analysis
Electrochemical Potential
Lithium-Ion Batteries
Augmented-Wave Method
Cathode Materials
Doped Licoo2
Intercalation
Performance
Principles
Design
Issue Date: 2014
Publisher: Springer Heidelberg
Citation: Varanasi, AK; Bhowmik, A; Sarkar, T; Waghmare, UV; Bharadwaj, MD, Tuning electrochemical potential of LiCoO2 with cation substitution: first-principles predictions and electronic origin. Ionics 2014, 20 (3) 315-321, http://dx.doi.org/10.1007/s11581-013-0970-6
Ionics
20
3
Abstract: With a goal to improve the performance of LiCoO2 as a cathode material in Li-ion batteries, we simulate substitution of various elements (X = Be, Mg, Al, Ga, Si and Ti) for Co using first-principles density functional theory and predict changes in its electrochemical potential. While the electrochemical potential of LiCoO2 is enhanced with substitution of Be, Mg, Al and Ga for Co, an opposite effect is predicted of Si and Ti substitution. We determine the electronic origin of these changes in electrochemical potential using (a) Bader method of topological analysis of charge density, (b) partial density of electronic states to estimate oxidation states of metal and oxygen, and charge re-distribution upon lithiation. We find that the distribution of electronic charge donated by Li is influenced by the nature of the X-O bond. A larger electron transfer to O (in XO6 octahedron) upon lithiation leads to stronger Li intercalation and thereby higher electrochemical voltage. Our findings provide a platform for a rational design of cathode materials in Li batteries with enhanced voltage.
Description: Restricted Access
URI: http://hdl.handle.net/10572/2570
ISSN: 0947-7047
Appears in Collections:Research Articles (Umesh V. Waghmare)

Files in This Item:
File Description SizeFormat 
280.pdf
  Restricted Access
449.08 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.